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Crotylations of (R)-2,3-cyclohexylideneglyceraldehyde (1) were utilized in a simple synthesis of trans-oak
lactone (I), a representative example of chiral b,c-disubstituted-c-butyrolactones. In this endeavor, croty-
lations of 1 in THF mediated with four low valent metals were studied. All these reactions took place effi-
ciently producing 2 in good yields but with varied stereoselectivities. Each reaction produced the
corresponding secondary alcohol adduct 2b and 2c predominantly with diastereoisomer 2a only in trace
amounts. Among these four reactions, only Sn-mediated addition yielded 2b as the major products. Later,
2c was converted into 2d through oxidation–reduction. Finally, 2c was transformed into trans-oak lac-
tone I in a few steps. Following this route, 2a, 2b, and 2d would produce other stereoisomers of oak
lactone.

� 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

c-Butyrolactones are the constituents of many biologically ac-
tive natural products.1 Their enantiopurity and absolute configura-
tion often affect their physiological activities.2 Additionally,
optically active c-butyrolactones are useful as chiral synthons for
their versatile application in the synthesis of bioactive com-
pounds.1,3 Chiral b,c-disubstituted-c-butyrolactones, due to their
varied biological activities, have drawn considerable attention for
their synthesis over the ages.4 Furthermore, the correlation be-
tween optical rotations and different conformations of trans-b,c-
disubstituted c-lactones drew attention of organic chemists.5

(4S,5R)-trans-(A) and (4S,5S)-cis-(B) 5-butyl-4-methyl butyro-
lactones, known as oak lactones (Fig. 1), are extracted as the major
compounds from wood in alcoholic beverages during fermentation
and/or storage in oak barrels.6 Their corresponding (4R,5S)-trans-
(ent-A) and (4R,5R)-cis-(ent-B) enantiomers are also present in
the same beverages. The aroma of alcoholic beverages is believed
to be due to the presence of pure diastereomers of these lactones.6

Compounds A and B are good examples of chiral trans-b,c- and cis-
b,c-disubstituted c-butyrolactones, respectively. Hence, apart from
obtaining them in sufficient amount for their extensive biological
screening, any synthesis of them assumes good significance from
synthetic viewpoint specially to evaluate the applicability of the
approach for stereo-selective construction of other compounds
ll rights reserved.
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possessing b,c-disubstituted c-butyrolactone units. So far, several
syntheses of A and B were reported in the literature.7 Among them,
Brown et al.7b synthesized all four stereoisomers of oak lactone. In
our ongoing program on the synthesis of bioactive compounds we
are making versatile use of easily accessible (R)-2,3-cyclohexylid-
eneglyceraldehyde (1)8a to synthesize different molecules possess-
ing varied structural features.8a–h We present herein its another
simple application to develop a simple route for stereodivergent
syntheses of all four stereoisomers of oak lactone. In this Letter,
this has been exemplified by the total synthesis of trans-oak lac-
tone (A).

Retrosynthetic analysis (Scheme 1) of A suggested that crotyla-
tion of 1 should be a straightforward approach to begin with. This
would enable us to introduce two contiguous stereo-centers in A
including the methyl branching at its C-4 position at an initial
stage. There are several well-known procedures for stereo-differ-
entiating crotylations9 of aldehydes that are performed in highly
anhydrous conditions. Schlapbach and Hoffman7d synthesized only
(4S,5R)-trans-(A) through asymmetric crotylboration of an alde-
hyde. In recent years, there has been considerable attention on per-
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Figure 1. Structures of trans-oak lactone (A) and cis-oak lactone (B).
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Scheme 1. Retrosynthesis of trans-oak lactone (A).
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forming organic reactions in wet solvents, aqueous medium, or salt
solutions10 with a view to attaining their practical viability. This
prompted us to give an effort to crotylate 1 in moist reaction con-
ditions mediated with several low valent metals.11 This also gave
us an opportunity to compare the efficacy and stereo-selectivity
(Table 1) of all these low valent metal-mediated reactions with
those observed by us earlier8b for the same reaction using Luche’s
procedure.12 First, 1 was crotylated (Scheme 2) following media-
tion with either of low valent Cu, Co, and Fe that were prepared
in situ by reduction of their salts with Zn11a (Table 1, entries a–
c). Also, the same reaction was performed (Scheme 2) following
mediation with low valent Sn, which was prepared in situ by
reduction of commercially available SnCl2, 2H2O [E0

Sn¼Sn2þþ2e ¼
þ0:136 V] with zinc [E0

Zn=Zn
2+

+2e = +0.761 V] (Table 1, entry d).
All the four reactions were carried out13 using excess amount of
commercially available crotyl bromide (Fluka make, mixture of
cis and trans, 1:5), the metal salt and reducing metal (zinc) to en-
sure their smooth progress. The results of all crotylation reactions
are given below in Table 1.

2. Results

In all these four cases, reactions progressed smoothly and with
absolute regioselectivity giving only the c-addition product 2 in
good yields (Table 1). Among the four, the yield of Fe-mediated
reaction was found to be the best (Table 1, entry b) and was even
better than that obtained earlier8b following Luche’s procedure. It
is worthy to note that Fe- and Sn-mediated crotylation of 1 took
place at much faster rates (Table 1, entries b and d) than the other
two (Table 1, entries a and c) and also the earlier one.8b Thus,
employing bimetallic redox strategy11 all the four low valent met-
als (Cu, Fe, Co, and Sn) were found to be good mediators with var-
ied efficacies to crotylate aldehyde 1 and again in wet solvent.
Table 1
Crotylation of (R)-2,3-O-cyclohexylideneglyceraldehyde (1)

Entry Reagents Time Products Yielda (%) Products
Ratio

a CoCl2, 6H2O; Zn 24 h 2a, 2b, 2c 78 2a:2b:2c::
3.8:47.5:48.7

b FeCl3/Zn 10 min 2a, 2b, 2c 87 2a:2b:2c::
1.5:48.4: 50.1

c CuCl2, 2H2O; Zn 15 h 2a, 2b, 2c 79 2a:2b:2c::
4.2:29.5:66.3

d SnCl2, 2H2O; Zn 45 min 2a, 2b, 2c 80 2a:2b:2c::
7.1:78.2:14.7

a The nearest rounded figures of all yields were given here.
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Scheme 2. Crotylation of (R)-2,3-O-cyclohexylideneglyceraldehyde(1). Reagents:
3. Stereochemistry

Interestingly, all the reactions yielded the same three (2a, 2b,
and 2c)8b isomers as obtained earlier.8b Of them, 2b and 2c were
produced predominantly and 2a was obtained in trace amount in
all cases (Table 1, entries a–d). While, Co- and Fe-mediated reac-
tions afforded 2c little more than 2b (Table 1, entries a and b),
Cu-mediated reaction produced 2c in much higher amount (Ta-
ble 1, entry c). In sharp contrast with these three cases (Table 1, en-
tries a–c) and also the earlier one,8b low valent Sn-mediated
reaction produced 2b as the major product (Table 1, entry d). This
suggests that each low valent metal mediator has its characteristic
role regarding the stereo-selectivity in crotylation of 1. The easy
separation of the diastereomers 2a–c by column chromatography
enabled us to obtain each of them in homochiral form and deter-
mine the stereo-selectivity of each reaction. The fourth possible
isomer (2d)14 was obtained from 2c following an oxidation–reduc-
tion protocol.8h Thus, PCC oxidation of 2c yielded ketone 3 which
was reduced with K-selectride to obtain 2d (Scheme 3) in good
yield and with absolute stereo-selectivity.

The formation of 2,3-anti addition products (2b and 2c) in major
amount in all these additions gave evidence that the reactions took
place following Felkin–Anh model (Fig. 2).15 However, the presence
of 3,4-syn- and 3,4-anti- relationships, respectively, in these two
major products (2b and 2c) suggested the participation of Zimmer-
man–Traxler transition state16 (Fig. 3) during the addition of cro-
tylmetals. Presumably, in each case there has been a substantial
degree of inter conversion between (E)-crotylmetal (X) that was
predominantly formed initially from crotyl bromide (Fluka make,
containing a mixture of cis and trans-bromide: 1:5) and (Z)-crotyl-
metal (Y) prior to the C–C bond formation. Hence, the differences
in the formation of 2b and 2c in all four cases could be explained
from the degree of inter conversion between (E)-crotylmetal (X)
and (Z)-crotylmetal (Y) which was certainly governed by the low
valent metal mediator involved.

To prepare A, compound (2c) was first silylated to obtain 4 in
almost quantitative yield. Regio-selective hydroxylation at its ter-
minal olefin afforded 517 in good yield. Benzoylation of 5 and deke-
talization of the resulting benzoate 6 in acidic condition gave 1,2-
diol 7.18 This was subjected to NaIO4 cleavage to produce aldehyde
8. Wittig olefination of 8 yielded olefin 9 in good yield which was
saturated on catalytic hydrogenation to afford 10. This was deben-
zoylated to give 11.19 PCC oxidation of 11 gave aldehyde 12 which
without being purified further was desilylated to afford the rela-
tively unstable lactol 13. This was quickly oxidized with PCC to fur-
nish trans-oak** lactone (I)20 (Scheme 3) whose spectral and
optical data were in conformity with the reported ones.7a
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Figure 2. Fekin-Anh model for crotylmetal addition to 1.
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4. Conclusion

In summary, (4S,5R)-trans-oak lactone (A), a representative
example of chiral trans-b,c-disubstituted c-lactone has been syn-
thesized using Barbier type crotylations of 1 in wet media medi-
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ated with four different low valent metals.11 All these crotylation
reactions (Scheme 2 and Table 1) produced 2 in good yields, but
with varied stereo-selectivity, showing the formation of 2b/2c pre-
dominantly and 2a in trace amount. The fourth isomer 2d was later
prepared from 2c using an oxidation-reduction protocol.8h Finally,
one (2c) of the major crotylation products was exploited to prepare
A. Evidently, our route is shorter, more straightforward, and prac-
tically more viable compared to a reported approach7a for the syn-
thesis of the same molecule A staring from 1. Understandably,
employing the same reaction protocol with 2a, 2d, and 2b would
lead to the synthesis of other three diastereomers, namely, (4R,
5S)-trans-(ent-A), (4S, 5S)-cis- (B), and (4R, 5R)- cis-(ent-B), respec-
tively. Hence, the moderate selectivity of these crotylations of 1
and the easy separation of the diastereomers (2a-c) by column
chromatography together enhanced the possibility of obtaining
all four oak lactone stereoisomers and thereby attaining stereo-
divergence in this route.
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2H), 3.62 (t, J=7.2 Hz, 1H), 3.71 (dd, J = 2.2 and 6.4 Hz, 1H), 3.86-3.93 (m, 1H),
4.09-4.16 (m, 1H), 7.25-7.47 (m, 6H), 7.66-7.73 (m, 4H); 13C NMR (CDCl3,
50 MHz): d 15.2, 19.3, 23.7, 23.8, 25.0, 26.9, 33.8, 34.5, 35.2, 35.9, 60.7, 67.4,
75.6, 77.5, 108.9, 127.3, 127.4, 129.5, 129.6, 133.4, 133.5, 135.8. Anal. Calcd. for
C29H42O4Si: C, 72.15; H, 8.77. Found: C, 72.34; H, 8.52.

18. Compound 7: ½a�24
D +6.72 (c 1.61, CHCl3); 1H NMR: 1.03 (d, J = 6.98 Hz, 3H), 1.09

(s, 9H), 1.61-1.66 (m, 1H), 1.9-2.0 (m, 2H), 2.42 (bs, 2H), 3.53-3.61 (m, 1H),
3.69-3.80 (m, 3H), 4.13-4.19 (m, 2H), 7.25-7.45 (m, 9H), 7.65-7.71 (m, 4H),
7.92-7.97 (m, 2H); 13C NMR: 15.1, 19.4, 27.0, 31.3, 34.0, 63.4, 63.9, 72.8, 77.4,
127.4, 127.6, 128.1, 129.3, 129.7, 130.1, 132.6, 133.2, 135.8, 166.5. Anal. Calcd.
for C30H38O5Si: C, 71.11; H, 7.56. Found: C, 71.33; H, 7.39.

19. Compound 11: ½a�24
D + 4.6 (c 1.4, CHCl3); 1H NMR: 0.76 (t, J = 3.2 Hz, 3H), 0.94 (d,

J = 6.8 Hz, 3H), 1.08 (m merged with s, 13H), 1.41-1.46 (m, 4H), 1.50-1.54 (m,
1H), 1.97 (broad s, 1H), 3.50-3.58 (m, 3H), 7.37-7.44 (m, 6H), 7.68-7.73 (m, 4H);
13C NMR: 13.9, 15.5, 19.5, 22.5, 27.1, 28.0, 32.6, 34.3, 34.5, 60.6, 77.4, 127.3,
127.4, 129.4, 129.5, 124.1,134.5, 136.0. Anal. Calcd. for C25H38O2Si: C, 75.32; H,
9.61. Found: C, 75.11; H, 9.77.

20. Compound I: ½a�24
D + 93.5 (c 0.25, CHCl3); Lit7a ½a�24

D + 93 (c 0.2, CHCl3). 1H NMR:
0.91 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 1.19-1.65 (m, 6H), 2.16-2.21 (m,
2H), 2.62-2.71 (m. 1H), 3.96-4.02 (m, 1H). 13C NMR: 14.3, 17.2, 22.7, 27.5, 33.8,
36.0, 37.9, 87.6, 176.7.
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